Antenna Modeling With 4NEC2

by Craig Wiexelbaum, KF5WBE

Presented to HOTARC: May 22, 2014

- 2. Brief Discussion on NEC2 format
- 3. Basic modeling approach
- 4. Example model
- 5. Brief overview of some 4Nec2 tools

What this presentation will not cover:

- 1. Method of Moments and RF Theory
- 2. NEC2 capabilities
- 3. All of 4Nec2 Features

 $\mathbf{2}$

- Set the Reference System

- Phi/Azim unit is the most traditional
- Azim(compass)/Elev is the easiest to understand
- Length: Inches
- Radius: mm
- I do not recommend changing any of the other default values until you have some experience modeling

10

Craig Wiexelbaum, KF5WBE

NEC Program Structure

- NEC uses "cards" for programming.
- Cards need to be entered in a certain order

 $\mathbf{14}$

CM	Comments
:	
CE	End of Comment Blocks
GW/SP/	Geometry Definition
:	
GE	End of Geomtry Block
EX/GR/LD/FR/RP/	Program Control
:	
EN	End of Program

- 40m ½ wave dipole antenna in free space (no ground)
- Center Freq = 7.15 MHz
- $\lambda/2 = 300/\text{freg}/2 = 20.979\text{m} = 68.8288 \text{ ft}$
- 14 AWG copper wire
- 52 feet above ground

- Create the File
 - 1. Select EDIT on the 4NEC2 Main window then select Input (.nec) file
 - 2. Select File then New to begin editing a new model
 - 3. Select the "Symbols" Tab
 - 4. In the Scaling checkbox select "Feet"
 - 5. Select File then "Save As" HOTARC_40m.NEC to name the new project

- 1. Select the Geometry tab in the 4NEC2 Edit Window
- 2. Under "Type" select Wire
 - For Tag enter 1

NEC references wires by tag number

Each wire requires a unique tag number

- under Segs enter wireSeg
- enter the coordinates of the wire ends x1, y1, z1and x2, y2, z2
 - wireX1, wireY1, wireZ1
 - wireX2, wireY2, wireZ2
- enter #14 for the radius
- (#14 is a predefined wire gauge symbol in 4NEC2 designating #14 wire)
- 3. Save the file

19

Model Sources and Loads

- 1. Select the Source / Load tab
- 2. Verify both Show Source and Show Loads are checked
- 3. In the Source Section:
 - For source select Voltage-src
 - Tag enter 1, Seg enter 50%, Real enter 1
 - \rightarrow For Seg you can choose 0% to 100% or a specific segment #

4. In the Loadssection:

- Select wire conductor
- Tag-nr enter 1, First-seg enter 0, Last-seg enter wireSeg
- Select Cond then choose Copper
- 5. Save the file

Geometry and Segmentation Checking

- Used to find many common modeling errors
- 1. Select the Geometry window
- 2. Verify the model displayed in the Geometry window looks like what you intended
- 3. Select Validate then select Run GeometryCheck
- 4. Select Validate select Run SegmentChecks
- 5. If there are errors go back to the Editor and make corrections!

24

Convergence Testing

- Used to check number of segments required for a good solution
- I prefer a combination of impedance and gain

ດ	C
4	U

	impedance		impedance Vert Gain	
#Seg	Real	Imag	(dBi)	Angle
3	96.5	41.7	5.79	40
11	95.5	43.3	5.95	40
21	95.7	43.5	5.96	40
51	95.9	43.7	5.96	40

Additional 4NEC2 Tools

- Geometry builder is used for making geometric figures that can be imported into your NEC file.
 - 2d Rectangle or Circle
 - Box, Cylinder, 3D Parabala
 - Sphere
- Optimizer
- GnuPlot for additional plotting
 - -- download GnuPlot version 4.0 from the 4nec2 website

